College of Engineering

M.S. In Advanced Materials Engineering

M.S. In Advanced Materials Engineering

M.S. In Advanced Materials Engineering

The goal of the Master of Science in Advanced Materials Engineering program is to train graduate students with state-of-the-art technical knowledge and skill sets necessary for independent critical thinking, problem solving, and decision making to address multidisciplinary problems in materials engineering. The degree program also provides students with opportunities in taking multidisciplinary courses from within the College of Engineering and from other colleges at UTSA in order to enhance students’ leadership, problem solving, and/or entrepreneurship skills.

Graduates of the MS MatE will be general practitioners and specialists, thus the degree program will provide the necessary balance between the fundamental and technical aspects of the field. All students will take core courses to achieve a common platform of understanding and knowledge covering topics in three interlinked areas: (a) Structure-function relationships in materials, which determine behavior at the macro-, micro-, nano-, molecular- and atomic-levels; (b) Synthesis, characterization and measurement of materials (ceramics, composites, metals, polymers, multifunctional and metamaterials) especially those with novel properties to address current and future technological challenges; and (c) Design and applications of materials that address critical issues facing society including energy, sustainability and health care.

Each student will choose one of the concentrations according to materials classifications and applications tailored to his or her specialities:

  • Concentration I- Multifunctional Electronic, Dielectric, Photonic and Magnetic Materials
  • Concentration II- Multifunctional Biomedical Materials

Interwoven in the two concentrations will be concepts of computational modeling that develops new materials with novel properties and responses for targeted applications.

Program Information

Why pursue a Masters in Advanced Materials Engineering?
  • Interdisciplinary curriculum (taking courses from Materials Engineering, Management of Technology, Electrical and Computer Engineering, Bio-Engineering, and other science and engineering disciplines across departmental boundaries).
  • State-of-the-art technical knowledge and skill training
  • Internship and Fellowship opportunities
  • Pathways to Doctoral Programs and leadership job opportunities in Materials Science and Engineering

Graduates will have advanced knowledge and capability to solve problems related to the synthesis, characterization, design, and application of materials. Graduates choosing biomedical material concentration will also be a job-ready workforce for the continued growth of biotechnology.

Admissions and Deadlines

Program Admission Requirements
  • Admission pre-requisites: Bachelor’s degree in materials science, physics, chemistry, or any discipline in engineering. Minimum grade point average of 3.0 (on a 4.0 scale) in the last 60 semester credit hours of undergraduate studies.
  • Graduate Studies Application: Yes
  • Department Application: No
  • Transcripts: Official transcripts from ALL colleges and universities attended
  • Test Scores: General GRE required
  • Resume or CV: Required
  • Letters of Recommendation: Two letters of recommendation
  • Statement of Purpose: A statement of research experience, interests and goals.
  • Minimum TOEFL Score (for International Applicants): 550 paper/79 internet
  • Minimum IELTS Score (for International Applicants): 6.5

Please visit the Graduate Admissions Deadline page for a list of application deadlines.

Degree Requirements

The minimum number of semester credit hours required for the degree is 30 for the thesis option and 33 for the non-thesis option.

Courses offered for the graduate programs of these collaborating departments complement the MS in MatE program in the form of elective courses. Through core and a variety of elective courses, students can customize their program of study according to their specific needs, professional development related goals, and career objectives in consultation with the Graduate Advisor of Record (GAR), as well as their thesis advisor and thesis committee.